Дубровский А.Д., Заверняева Е.В. Введение На текущий момент разработано ряд математических моделей вида реакции-диффузии: | | (Q1, Q2 - нелинейные функции; λ - параметр системы) | | (1) | в областях: Химии Пример. Автокаталитическая реакция. | Для этой реакции соответствует задача: | Экологии Теории морфогенеза Физики плазмы Теории горения Другие Требуется: классифицировать качественное поведение решения уравнений (1) в зависимости от различных правых частей классифицировать системы вида (1) В работе 1975 года Курамото и Цудзуки сделали вывод, что у большинства диссипативных систем существует аналог термодинамической ветви. При всех значениях параметра, исследуемые уравнения имеют однородное по пространству стационарное решение. Это решение устойчиво при λ<λ0. Поведение решений после потери устойчивости термодинамической ветви (λ>λ0) определяется спектром линеаризованной задачи для уравнения (1) в окрестности точки бифуркации λ0. Уравнение, предложенное Курамото и Цудзуки, описывает поведение в окрестностиλ0, вида: | | (2) | Функция W(R, T) - характеристика отклонения решений системы (1) от пространственно-однородного решения. Таким образом, уравнение (2) описывает только случаи, когда при λ>λ0 решение остается в малой окрестности термодинамической ветви. Без ограничения общности, в уравнении (2) можно положить с0=0, в этом можно убедится сделав замену переменных W=W´exp(i c0 t). И так получается, вторая краевая задача при условии, что потоки на границе равны нулю: | | (3) | Упрощенная модель Предположим, что в изучаемом решении системы (3) есть только две моды: | | (4) | Остальными пренебрежем, поскольку коэффициенты Фурье решений быстро убывают с ростом их номера. Коэффициент k будем выбирать так, чтобы выполнялись граничные условия задачи (3), например: k=π/l. Подставим (4) в (3) и отбросим все члены, куда входит cos(πmx/l), m>1, считая, что они пренебрежимо малы. | | (5) | Пусть (для удобства), то получается соотношения: | | (6) | Сделаем замену переменных в (6) | | (7) | Двухмодовая система Рассмотрим систему (7). Простейшие решения ξ=0, η=0, θ=2c1k2t+const – неустойчивый узел в системе (5). ξ=0, η=0, θ= θ(t), c12k4+2c1c2k2-1=0 – две особых точки седло и устойчивый узел. Узел теряет устойчивость на линии (c12+1)k4+2k2(1+c1c2)=0. ξ=0, P(c1,c2,k)=(9c12+6c1c2-4-3c22)k4-2k2(3c1c2-4-3c22)-(4+3c22) P(c1,c2,k)≤0, k<1 – пара особых точек. Одна из них устойчива при P(c1,c2,k)>-(4k2-1)2. P(c1,c2,k)>0 – инвариантная прямая, при k<1/2 – устойчива. Свойства системы Ограниченность решений. | Из системы (7): Следовательно: Так как z(t) ограничена и , то ξ(t) и η(t) - ограничены. | Особые точки ξ=0 или η=0 - уже рассматривались. Другие особые точки определяются из уравнений Система может иметь: Двукратный корень, если выполнены равенства Трехкратный при Ограниченная двухмодовая система Мы перешли к системе (7) трех уравнений, в которой переменная θ играет роль угла и может неограниченно расти при t>∞. Сделаем замену переменных следующим образом: , получаем | | (8) | Систему (8) имеет ограниченное решение при z>0. Особые точки и решения, которые возникают при x=0 или y=0, рассмотрены выше. Далее ограничим задачу, будем рассматривать систему (8) только при k=1. Режимы Система (8) - модель, в которой возникают различные режимы: Стационарный Простой предельный цикл Пример. c1=3,c2=-4;k=1; Сложный предельный цикл Атрактор Не исключено проявление квазиатрактора Данное проявление связанно с существованием нескольких различных в пространстве предельных областей, эти области могут находиться на очень близком расстоянии. В результате при численном анализе, траектория может скакать с одного решения на другое. Пример, существования двух областей притяжения на рис. при c1=1.21, c2=-9, k=1.0. Бифуркации На рисунке показана карта бифуркаций в области обцыса c1=[1; 8], ордината c2=[-5; -5.67], k=1 с шагом 0.01 по параметрам c1 и c2. Каждой точке соответствует пара c1, c2 и цвет, обозначающий красный - хаотическое поведение синим - бифуркация удвоения периода черным - остальные бифуркации пер Список литературы Лоскутов А.Ю., Михайлов А.С. "Введение в синергетику": Учеб. руководство. - М.: Наука. Гл. ред. Физ.-мат. Лит., 1990. - 272с. - ISBN 5-02-014475-4 Ахромеева Т.С., Курдюмов С.П., Малинецкий Г.Г., Самарский А.А. "О классификации решений системы нелинейных диффузионных уравнений в окрестности точки бифуркации". - УДК 517.958 Малинецкий Г.Г. "Хаос. Структуры. Вычислительный эксперимент: Введение в нелинейную динамику." - М.: Эдиториал УРСС, 2000. - 256 с. - ISBN 5-8360-0132-4 |